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Abstract. In order to get more reliable electronic structure of protein in aqueous solution, it is necessary
to construct a simple, easy-use equivalent potential of water molecules for protein’s electronic structure
calculation. The first-principles, all-electron, ab initio calculations have been performed to construct the
equivalent potential of water molecules for the electronic structure of Cys. The process consists of three
steps. First, the electronic structure of the cluster containing Cys and water molecules is calculated.
Then, based on the structure, the electronic structure of Cys with the potential of water molecules is
calculated using the self-consistent cluster-embedding method. Finally, the electronic structure of Cys
with the potential of dipoles is calculated. The dipoles are adjusted so the electronic structure of Cys with
the potential of dipoles is close to that of water molecules. The calculations show that the major effect of
water molecules on Cys’ electronic structure is lowering the occupied electronic states by about 0.032 Ry,
and broadening energy gap by 16%. The effect of water molecules on the electronic structure of Cys can
be simulated by dipoles potential.

PACS. 31.15.Ar Ab initio calculations – 31.70.Dk Environmental and solvent effects – 71.15.-m Methods
of electronic structure calculations

1 Introduction

The knowledge of electronic structure is essential for un-
derstanding the properties and biological functions of a
protein according to the quantum mechanics. But it is
difficult to calculate the electronic structure of a protein
because of its incredible huge computational effort, which
is too large to be affordable by any supercomputer in the
present and near future. To the best of our knowledge,
there is no successful first-principles, all-electron, ab ini-
tio calculation of any protein before 2000.

Self-consistent cluster-embedding calculation (SCCE),
a first-principles, all-electron, ab initio calculation
method, is developed based on the density functional the-
ory [1]. Different from the traditional calculation method,
the obtained one-electron wave functions by the SCCE
method are localized — each one-electron wave function
is localized only in a part of the region occupied by the sys-
tem. This results in two advantages: (1) the SCCE method
can be applied to any complex system, and the localized
valence electrons in material can be better described by
the localized wave functions obtained in the SCCE cal-
culation; (2) the computational effort is reduced greatly
while the calculation precision is kept. This makes the elec-
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tronic structure calculation of protein a reality. The SCCE
calculations have been successfully applied to several insu-
lators, semi-conductors, metals, crystals with defects and
impurities, and surfaces [2–8].

For the first time, the first-principles, all-electron,
ab initio calculation of electronic structure of a real pro-
tein was completed in 2000 [9]. Up to day, the electronic
structures of three proteins with four three-dimensional
structures have been obtained [10–12]. However, the for-
mer calculations did not include solvent influence due to
limited computational conditions and the following rea-
sons: water molecules are usually quivering, turning and
fungible at high speed in action with protein. There is no
fixed chemical binding between water molecules and pro-
tein in solution. The effect of water molecules on protein is
a kind of average force, which mainly influences the three-
dimensional structures of protein. So the electronic struc-
ture of a protein in solution having a certain geometric
structure can be approximated by the electronic structure
of the same protein having the same geometric structure
but no water molecules around. This viewpoint has been
demonstrated by our previous calculated results, which
agree with experimental data. In order to make the calcu-
lation more reliable, however, the effect of water molecules
should be considered.
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Although the computational effort is reduced greatly
in the SCCE method, for a protein containing thousands
of atoms, however, the computational effort is still so large
which almost approaches the upper limit of a supercom-
puter. So it is impossible to add a large amount of water
molecules to the calculation. For the electronic structure
calculation of protein, it is necessary to construct an equiv-
alent potential of water molecules, which must be simple,
easy-use and with almost no additional computational ef-
fort.

The computational study of protein molecules, say,
protein folding and molecule dynamics calculation, has
until now focused mainly on their geometric structure.
Effective energy function for proteins and a Gaussian
solvent-exclusion model for the solvation free energy are
developed [13]. The energy function including implicit sal-
vation, applied for the protein folding calculation, had
been established by Lazaridis and Karplus in 1998 [14].
There are some typical models about the salvation ef-
fect, such as onsarger [15] and the conductor-like screen-
ing models [16]. The solvent’s influence (water, ethanol,
ethyleneglycol, and trifluoroethanol) on the stability of
the peptide hydrogen bond have been calculated by
Karplus and Hong Guo by the first-principles calculation
in 1994 [17]. In 1995, solvent’s effect on several small pro-
tein molecules such as the bovine pancreatic trypsin in-
hibitor (BPTI) [18] has also been studied. In recent years,
some other treatments are developed such as COSMO-RS
approach [19], the solvent reaction field models [20] (the
continuum model, PCM, IPCM). However, they are all de-
signed for the calculation of geometric structure, not elec-
tronic structure. Because the first-principles, all-electron,
ab initio calculation of the electronic structure of protein
is on its primary stage, there is no suitable equivalent po-
tential of water molecules for the electronic structure cal-
culation of protein. The equivalent potential developed in
this paper can be applied directly to the electronic struc-
ture calculation of protein using the SCCE method.

There are more than a hundred thousand of proteins,
but all are made up of 20 amino acids. So for the elec-
tronic structure calculation of proteins, we only need to
construct the equivalent potentials of 20 amino acids. As
the first sample, we choose Cysteine (Cys) which is rel-
atively small. Cys has 14 atoms with a lateral chain of
mercaptan. In a real protein, two nearby Cys usually com-
bined as a Cystine through a disulfide bond formed by the
oxidation of two mercaptans. Disulfide bond is of impor-
tance for stabilizing three-dimensional structure of pro-
tein. For some proteins, disulfide bond connects different
polypeptides, but its major effect is to stabilize the folding
of peptide chain. A small protein molecule usually needs
several disulfide bonds to stabilize its three-dimensional
structure.

This work is based on two considerations: (1) there is
no fixed chemical binding between water molecules and
protein in solution, so no fixed relative position between
water molecules and protein. The water molecules are with
the most probability at the position which makes the to-
tal energy of the system minimum. The electronic struc-

ture of protein with water molecules at these positions can
be considered approximately as the electronic structure of
protein in solution; (2) the electronic structure of protein
is calculated by the SCCE calculation. The dipoles made
up of point charges can be easily added to the SCCE cal-
culation with almost no additional computational effort.
On the other hand, the average potential of polar water
molecules can be reasonably simulated by dipoles. So we
choose dipoles made up of point charges to simulate the
potential of water molecules on the electronic structure of
Cys. The work consists of three steps. First, the geometric
structure of the Cys + nH2O system is determined using
the “free cluster calculation”. Second, based on the geo-
metric structure obtained in the first step, the electronic
structure of Cys with the potential of water molecules
is calculated using the “self-consistent cluster-embedding
(SCCE) method”. Third, the water molecules of the sec-
ond step are replaced by dipoles made up of point charges.
The dipoles are adjusted so the electronic structure of Cys
with the potential of dipoles is close to that obtained in
the second step. Thus the equivalent potential of water
molecules for the electronic structure of Cys is established
using the dipoles made up of point charges.

2 Theoretical model and computational
procedure

The “free cluster calculation” and the “self-consistent
cluster-embedding (SCCE) calculation” methods have
been described in detail elsewhere (see Refs. [1,23] and
website www.esprotein.org.cn), here we only give a brief
over view for completeness.

According to the density functional theory
(DFT) [21,22], the total energy of a system con-
taining N electrons and M fixed nuclei can be written as
(no relativistic effect is included; atomic units are used:
e2 = 2, � = 1, and 2me = 1, the unit of energy is the
Rydberg constant Ry = e2/2a0 = 13.6049 eV):

EV [ρ] = Tni[ρ] + Exc[ρ] +
∫ ∫

ρ(r)ρ(r′)
|r − r′| drdr′

− 2
M∑

j=1

∫
ρ(r)Zj

|r− Rj |dr +
M∑
i�=j

ZiZj

|Ri − Rj| , (1)

where Tni[ρ] is the kinetic energy of a non-interacting
electron system, Exc[ρ] is the exchange-correlation energy.
In deriving equation (1), Kohn and Sham have assumed
the existence of a non-interacting electron system having
the same ground-state charge density ρ(r) as that of the
real interacting system [22]. Each non-interacting electron
can now be represented by a stationary state one-electron
wave function Φσ

n(r). So the charge density ρ(r) and ki-
netic energy Tni[ρ] of the non-interacting system can be
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written as:

ρ (r) = ρ↑ (r) + ρ↓ (r) =
∑

occupied...l

∣∣∣Φ↑
l (r)

∣∣∣2

+
∑

occupied...m

∣∣Φ↓
m (r)

∣∣2 , (2)

Tni[ρ] =
∑

occupied...l

∫
Φ↑∗

l (r)
(−∇2

)
Φ↑

l (r) dr

+
∑

occupied...m

∫
Φ↓∗

m (r)
(−∇2

)
Φ↓

m (r) dr. (3)

Using formulas (2) and (3), a single-electron Schrodinger
equation, i.e., the well known Kohn-Sham equation [22],
is obtained by the variation of functional (1) with respect
to Φσ∗

n (r) under conservation rule
∫

ρ (r) dr = N :

{
−∇2 + 2

∫
ρ (r′)
|r − r′|dr

′ − 2
M∑
i=1

Zi

|r − Ri| + V σ
xc (r)

}

× Φσ
n (r) = εσ

nΦσ
n (r) , (4)

where the exchange-correlation potential is

V σ
xc(r) =

∂Exc[ρ]
∂ρσ(r)

. (5)

The exact solution of equation (1) could be obtained if the
following two conditions were satisfied: (i) Exc[ρ] is exact;
(ii) the trial one-electron wave functions Φσ

n(r) are uncon-
strained in solving the Kohn-Sham equation (4) (required
by the variational principle). Then we should obtain an
uniquely exact set of {Φσ

n(r)} which corresponds to an
uniquely correct ρ(r). The Kohn-Sham equation (4), with
an exact V σ

xc(r) and a correct ρ(r), describes such a sit-
uation in which one electron (represented by an Φσ

n(r))
moves under the average potentials of all other electrons
and nuclei. Because the potential produced by an elec-
tron (|Φσ

n(r)|2) does not act on itself, the single-electron
Hamiltonian in equation (4) includes only the potentials
produced by ρ′ (r) = ρ (r) − |Φσ

n(r)|2. This leads two re-
sults: (a) different Φσ

n(r) will correspond to different single-
electron Hamiltonian (or V σ

xc(r)) in Kohn-Sham equa-
tion (4); (b) in general, the Hamiltonian acting on an
Φσ

n(r) has no symmetry of ρ(r). As an example, consider a
perfect periodic crystal. Although its charge density ρ(r)
is of lattice periodicity, in general, the exact single-electron
Hamiltonian of Kohn-Sham equation (4) will have no lat-
tice periodicity.

In practical calculation, however, the two conditions
above can not be satisfied. Two approximations are taken:
(1) the exchange-correlation potential V σ

xc(r) is averaged
over all one-electron states with spin σ (such as LDA);
(2) each Φσ

n(r) is constrained to satisfy a certain bound-
ary condition. Please note, the first approximation means
that all Φσ

n(r) in equation (4) now correspond to a same
V σ

xc(r) (and single-electron Hamiltonian) which having the

symmetry of ρ(r), and all Φσ
n(r) are now constrained by

this added symmetry. But this added constraint is not
physically essential, and can be removed by boundary con-
dition. The second approximation means that all wave
functions, which do not satisfy the boundary condition,
are thrown away, although they may be the true solu-
tions of the system. When one kind of {Φσ

n(r)} is chosen
(a boundary condition is applied), it means that a kind
of non-interacting electrons is used to describe the real
system approximately. So by choosing different boundary
conditions, we can use different kinds of {Φσ

n(r)} to get
approximate ρ(r). According to variational principle, the
calculated energy will be close to the true ground-state
energy, only if the trial one-electron wave functions Φσ

n(r)
describe real electrons well. For example, a set of Bloch
functions can give a good description to quasi-free elec-
trons, but can not do it for localized electrons. The latter
can be best described by a set of localized one-electron
wave functions.

We now assume the first approximation being taken,
so all Φσ

n(r) correspond to a same single-electron
Hamiltonian Hσ(r) (without boundary condition), and are
constrained by an added symmetry of ρσ(r). We discuss
the second approximation. There are two kinds of non-
interacting electrons, extended and localized. They satisfy
different boundary conditions, and correspond to different
calculation methods.

2.1 Extended non-interacting electron model

Each one-electron wave function Φσ
n(r) is constrained to

spread over the whole region occupied by the system. Un-
der this model, the equation (4), with periodic boundary
condition, can be used to a perfect periodical crystal. The
single-electron Hamiltonian with periodic boundary con-
dition has the periodicity of ρ(r), the Bloch theorem is
valid and band structure calculation is performed. For a
free cluster, equation (4) is solved with the natural finite
boundary condition Φσ

n(r) r→∞−−−→ 0, and the single-electron
Hamiltonian has the point symmetry of the free cluster.

2.2 Localized non-interacting electron model

Each one-electron wave function Φσ
n(r) is constrained to

distribute in a part of the region occupied by the sys-
tem. Under this model, equation (4) is used for the self-
consistent cluster-embedding (SCCE) calculation [1]: the
system is divided into k embedded clusters, and NΦσ

n(r)
are divided into k groups. The Φσ

n(r) in the ith group sat-
isfy the ith set of special boundary conditions, and localize
in the ith region (embedded cluster).

The details are as follows. Consider the ith embedded
cluster whose electronic density is represented by ρ1(r).
The rest of the system is treated as environment with elec-
tronic density ρ2(r) which has small overlap with ρ1(r).
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Because all NΦσ
n(r) are localized, we have (N = N1 +N2)

ρ (r) =
N∑

occupied...n,σ

|Φσ
n (r)|2

=
N1∑

occupied...n1,σ

∣∣Φσ
n1

(r)
∣∣2

+
N2∑

occupied...n2,σ

∣∣Φσ
n2

(r)
∣∣2 ≡ ρ1 (r) + ρ2 (r) (2′)

Tni [ρ] = Tni [ρ1 + ρ2]

=
N∑

occupied...n,σ

∫
Φσ∗

n (r)
(−∇2

)
Φσ

n (r) dr

=
N1∑

occupied...n1,σ

∫
Φσ∗

n1
(r)
(−∇2

)
Φσ

n1
(r) dr

+
N2∑

occupied...n2,σ

∫
Φσ∗

n2
(r)
(−∇2

)
Φσ

n2
(r) dr

≡ Tni [ρ1] + Tni [ρ2] . (3′)

A zero-value term
∫

ρ1(r)Vordr is added to the right side
of formula (1). For fixed ρ2(r), using formulas (2′) and (3′),
the variational principle now leads to the basic equation
of the SCCE method [1]:

{
−∇2 + 2

∫
ρ1 (r′) + ρ2 (r′)

|r− r′| dr′ − 2
M∑
i=1

Zi

|r− Ri|

+ V σ
xc (r) + Vor(r)

}
Φσ

n (r) = εnΦσ
n, (4′)

where the Φσ
n(r) represent only the non-interacting elec-

trons localized in and around the ith embedded cluster.
Apparently, the equation (4′) is exactly the same as the

Kohn-Sham equation (4) except for Vor(r). The Vor(r) is
defined as

Vor =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
M2∑
j=1

Zj

|r−Rj | if �r is in the core regions of
surrounding atoms

0 otherwise
(6)

where the M2 is the number of surrounding atoms. Vor

cancels the nuclear Coulomb potential in the core regions
of all surrounding atoms. The cluster-electrons will only
feel an electron-electron positive Coulomb potential in
these regions, and be forced out. So the Φσ

n(r) in equa-
tion (4′) satisfy a special boundary condition caused by
the Vor(r):

Φσ
n(r)|r is in the core regions of surrounding atoms = 0. (7)

The physical reasons of boundary condition (7) were given
in reference [1]. Consider the formula (2′), (6) and (7), it

is easy to see that as long as the boundary condition (7)
is satisfied, we have

∫
ρ1(r)Vor(r)dr = 0. So the Vor(r) in

equation (4′) does not change the energy functional (1).
Thus, the only effect of Vor(r) is causing the special bound-
ary condition (7). What we have done is only transforming
the boundary condition (7) into an equivalent potential
Vor(r) in equation (4′). So the equation (4′) is just the
Kohn-Sham equation (4) with the special boundary con-
ditions (7). In addition, there is a special finite boundary
condition for Φσ

n(r) because of its locality:

Φσ
n(r)

r go away from the embedded cluster−−−−−−−−−−−−−−−−−−−−−−−→ 0. (8)

The boundary conditions (7) and (8) are different for dif-
ferent embedded clusters. By calculating all k embedded
clusters one by one, equation (4′) gives a complete set of
one-electron eigenfunctions of whole system which makes
the total energy in formula (1) minimum [1].

The optimum values of core radii of surrounding atoms
are determined according to two criteria: (i) there is no
collapse disaster; (ii) the number of cluster-electrons re-
maining in the surrounding core regions is the minimum.
In general, the boundary condition (7) can be satisfied
with high precision, and it is found that the results are
not sensitive to the core radii if they are around the opti-
mum values.

3 Geometric structure of Cys + 5H2O system

The geometric structure and electronic structure of Cys +
5H2O system are determined by free cluster calculation.
Considering the degrees of freedom of the geometric struc-
ture of Cys in solution, five water molecules are appar-
ently not enough in describing the water molecule effect
on the geometric structure of Cys in solution. However,
our concern is the electronic structure rather than the ge-
ometric structure. We believe that five water molecules
are enough to describe the water molecule effect on the
electronic structure of Cys in solution. The reasons are as
follows:

(1) it is reasonable to assume that the Cys’ electronic
states, whose energies being much lower than the Fermi
energy, do not be changed by water molecules. Besides,
the properties and functions of a protein are mainly de-
termined by the electronic states near the Fermi level.
So we are actually use five water molecules to simulate
the water solvent effect on the Cys’ electronic states
near the Fermi level. If we choose ten electronic states
near the Fermi level, the degrees of freedom are small,
and five water molecules (containing 15 atoms, more
than the 14 atoms of Cys) should be reasonable;

(2) the valence electrons in amino acid residue are local-
ized electrons. The protein’s electronic states near the
Fermi level are mainly the localized electrons of the
N-terminal H3N+, the C-terminal COO−, and the tip
of lateral chain (neutral or charged). So only the wa-
ter molecules surrounding the three parts need to be
considered. Our calculations show that three water
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Table 1. Atomic coordinates of Cys cluster.

No. Atom X (Å) Y (Å) Z (Å)

1 C 0.7190 –0.1540 0.0100
2 N 0.1250 –1.0540 1.0460
3 C 1.9970 0.4500 0.5410
4 O 3.0520 0.2520 –0.0400
5 O 1.9750 1.1630 1.5910
6 C –0.2710 0.9620 –0.3220
7 S –1.8120 0.2350 –0.9620
8 H 0.9340 –0.7270 –0.8890
9 H 0.1600 1.6170 –1.0760
10 H –0.4870 1.5350 0.5770
11 H –0.7510 –1.4680 0.6820
12 H 0.7960 –1.8100 1.2710
13 H –0.0800 –0.5090 1.9010
14 H –2.4800 1.3660 –1.1670

molecules are needed near N-terminal H3N+, one wa-
ter molecule is needed near C-terminal COO−, and one
water molecule is needed near the neutral tip of lat-
eral chain. Thus, only five water molecules are needed
for Cys;

(3) of course, the more water molecules are used, the bet-
ter approximation the results get. However, more wa-
ter molecules would make the adjusting of geometric
structure and the dipoles much more difficult. Limited
by the computational capacity, we choose five water
molecules. The software of “free cluster calculation”
is developed by the group of Prof. Callaway in De-
partment of Physics and Astronomy, Louisiana State
University (USA) [23]. Electronic structures of many
molecules and clusters have been calculated using this
software [24–31].

3.1 Initial geometric structure of Cys + 5H2 O system

The coordinates of 14 atoms of Cys in solution are
come from Protein Data Bank (PDB). In neutral sol-
vent (pH = 7), the Cys’ N-terminal gets a proton to be-
come H3N+, and the C-terminal loses a proton to become
COO−. So polar water molecules mainly influence Cys’
charged H3N+, COO−, and the tip of lateral chain. At be-
ginning, the 5 water molecules are put randomly around
the Cys: one water molecule near the H3N+, one near the
COO−, and three near the tip of lateral chain. The atomic
coordinates of Cys in solution are given in Table 1.

The linear combination of Gaussian orbits is used as
basis function. The optimized Gaussian bases are the same
as that used in the electronic structure calculation of pro-
teins [9–12]: C — 8s6p, 26 Gaussian bases; N — 8s7p,
29 Gaussian bases; O — 8s7p, 29 Gaussian bases; H
— 8s1p, 11 Gaussian bases; S — 9s9p1d, 41 Gaussian
bases. The total number of Gaussian bases is 538. There
are 319 002 grid points used for numerical calculation of
exchange-correlation energy.

By solving the Kohn-Sham equation (4) self-
consistently, we get the electronic structure, total energy,
and force applied to each atom.

Table 2. Final atomic coordinates of five water molecules.

No. Atom X (Å) Y (Å) Z (Å)

1 O –5.5352 1.3298 –1.7041
H –5.2262 1.2353 –0.8031
H –4.7643 1.6175 –2.1933

2 O 3.3646 1.7794 –2.5639
H 3.0630 1.1295 –1.9291
H 3.6670 2.5141 –2.0301

3 O 2.1098 –5.3434 –0.8761
H 2.3048 –4.5721 –0.3439
H 1.6990 –4.9923 –1.6661

4 O –2.3037 –1.3067 1.0990
H –2.9388 –1.1917 1.8059
H –2.5326 –0.6329 0.4588

5 O –0.9277 –3.8950 0.0000
H 0.0202 –3.9850 0.0989
H –1.1813 –4.6287 –0.5600

Fig. 1. Final geometric structure of Cys + 5H2O system.

3.2 Adjusting of five water molecules

In the Cys + 5H2O system, the geometric structure of
Cys should remain unchanging, so that for each wa-
ter molecule. Only the relative positions between water
molecules and Cys should be adjusted. In the calcula-
tion, the water molecules are moved according to the ap-
plied forces, while the geometric structure of each water
molecule is kept. The five molecules are adjusted one by
one. After hundreds of adjustments, the geometric struc-
ture of Cys + 5H2O system with the lowest total energy is
got. The final atomic coordinates of five water molecules
are given in Table 2. The final geometric structure of
Cys + 5H2O system is shown in Figure 1. The total en-
ergy of the final structure is –2199.2309 Ry, 3.9229 Ry
lower than that of initial structure. As shown in the Fig-
ure 1, there are now three water molecules near H3N+, one
near COO−, and one near the S-H tip of lateral chain.
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Table 3. Part of eigenvalues and Mulliken populations of Cys with the potential of 5 water molecules.

State Energy Mulliken populations
(Ry) C N O H S

s p s p s p s s p

34 –0.1607 –0.3275 0.1874 –0.3415 –0.2230 –0.0114 0.0075 1.7504 –0.0165 –0.0471
33 –0.2041 2.6006 0.2603 –3.2808 0.2594 –0.0701 0.0166 1.0954 –0.0666 0.1655

Above are unoccupied states
32 –0.4062 0.0301 0.1404 –0.0462 –0.0056 –0.0655 0.9381 0.0043 –0.0006 0.0044
31 –0.4122 0.0055 0.0514 –0.0205 0.0012 –0.0027 0.9551 0.0032 0.0007 0.0056
30 –0.4655 0.1001 0.1443 –0.0180 0.0001 –0.0124 0.7489 –0.0058 0.0010 0.0405
29 -0.5158 –0.0645 –0.0310 0.0100 0.0000 0.0130 0.0301 0.1493 0.0903 0.7898
28 –0.6887 0.0051 0.3720 –0.0329 0.0051 0.0806 0.4034 0.0203 –0.0048 0.1480
27 –0.6999 0.0447 0.2399 –0.0451 –0.0008 0.1763 0.3378 0.0387 –0.0108 0.2154
26 –0.7145 0.0484 0.3045 0.0076 0.0108 0.0190 0.2471 0.0540 0.0080 0.2953
25 –0.7872 0.0998 0.1866 –0.0192 –0.0007 0.2060 0.4369 0.0305 0.0111 0.0467

Note: because of little amount, d-electrons and p electrons of H atom are not given in this table and the following tables.

4 The electronic structure of Cys
in the potential of water molecules

Based on the geometric structure of Cys + 5H2O sys-
tem determined in Section 3, the system is now divided
into six clusters for the “self-consistent cluster-embedding
calculation (SCCE)”. The Cys molecule is the first clus-
ter, and each water molecule is one cluster. The software
of the SCCE calculation is developed by our group, and
has been applied to several insulators, semi-conductors,
metals, crystals with defects and impurities, surfaces, and
proteins [2–12].

As proven in Section 2, for the SCCE calculation, the
potential is not changed, only the one-electron wave func-
tions are chosen to be localized: each one-electron wave
function belongs to one cluster, and localizes in the re-
gion of the cluster. So the electronic structure of Cys is
separated from that of water molecules, i.e., the electronic
structure of Cys in the potential of water molecules is ob-
tained.

The calculation contains two kinds of iterations: (i)
intra-cluster iteration. For each embedded cluster, equa-
tion (4′) is calculated self-consistently: ρ1(r) of the em-
bedded cluster is self-consistently changed during the it-
erations, while the rest of the system is served as fixed
environment ρ2(r); (ii) inter-cluster iteration. The 6 em-
bedded clusters are synchronously calculated by 6 CPUs,
respectively. After the convergence of intra-cluster itera-
tions of all 6 embedded clusters, the results are used for
constructing new environments ρ2(r) for each embedded
cluster, and a new inter-cluster iteration begins. After ten
inter-cluster interactions, we get converged result. Table 3
gives the information of orbits 25 to 34.

5 The equivalent potential of water
molecules on Cys simulated by dipoles

Each water molecule in Section 4 is now replaced by a
dipole: the O atom is replaced by a negative point charge,
and two H atoms are replaced by a positive point charge

located in the middle of line connecting the two H atoms.
Adjusting the point charges and positions of dipoles, the
electronic structure of Cys is recalculated using the SCCE
calculation. There is now no inter-cluster iteration, how-
ever, only the intra-cluster iteration of the Cys cluster
needs to be performed because the dipoles have no elec-
tron.

The electronic structure obtained in Section 4 is con-
sidered approximately as the electronic structure of Cys in
water solvent. According to that, the dipoles are adjusted.
In order to evaluate the difference between the calculated
electronic structure and that obtained in Section 4, two
criteria are established.

(1) The mean square deviation of eigenvalues

∆Eσ =
1

Nσ

[
Nσ∑
n=1

(εσ
n − εσ

n0)
2

]1/2

,

where the εσ
n and εσ

n0 are the eigenvalues of nth elec-
tronic state with spin σ calculated in this section and
in Section 4 respectively. Nσ is the numbers of elec-
trons with spin σ.

(2) The equivalent mean square deviation of charge density

∆Cσ =

1
N

⎡
⎣ N∑

i=1

N∑
j=1

(
Nσ∑
n=1

Cσ∗
ni Cσ

nj −
Nσ∑
n=1

Cσ∗
ni0C

σ
nj0

)2
⎤
⎦

1/2

,

where the Cσ
ni and Cσ

ni0 are the expansion coefficients
of the eigenfunctions of the nth electronic states with
spin σ calculated in this section and in Section 4 re-
spectively. N is the number of Gaussian bases used
to expand the one-electron wave function. (please pay
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Table 4. Point charges and coordinates of 5 dipoles.

No. Charge X (Å) Y (Å) Z (Å)
1 –0.29 e –5.9401 1.2573 –1.8585

+0.29 e –5.4002 1.3539 –1.6526
2 –0.9 e 3.3648 1.8006 –2.2718

+0.9 e 3.3652 1.8430 –1.6874
3 –0.692 e 1.6783 –3.0984 –1.3918

+0. 692 e 1.5704 –2.5371 –1.5208
4 –0. 692 e –2.9517 –0.7151 1.1490

+0. 692 e –3.3837 –0.3208 1.1823
5 –0. 692 e –1.5351 –3.1742 0.4035

+0. 692 e –1.1880 –3.5861 0.1729

attention to the formula (2):

ρσ (r) =
Nσ∑
n=1

|Φσ
n (r)|2 =

Nσ∑
n=1

[
N∑

i=1

Cσ∗
ni U∗

i (�r)

]

×
⎡
⎣ N∑

j=1

Cσ
njUj(�r)

⎤
⎦

=
N∑

i=1

N∑
j=1

[
Nσ∑
n=1

Cσ∗
ni Cσ

nj

]
U∗

i (�r)Uj(�r),

where the Gaussian bases Ui(�r) are same in the two
calculations.)

The initial charge of dipoles is set to 0.5 e. The distances
between positive charge and negative charge is 0.5858 Å,
witch remains unchanging. After the convergence, the val-
ues of the two criteria are calculated. Then the point
charges and the positions of the 5 dipoles are adjusted
one by one, until the two criteria reach the minimum.
Thus, the potential of 5 dipoles simulates the potential
of water molecules on the electronic structure of Cys.
The final charges of dipoles are as follows: the charges
of dipoles near H3N+, COO−, and S-H tip of lateral chain
are 0.692 e, 0.29 e, and 0.9 e, respectively. The final charges
and coordinates of five dipoles are given in Table 4, and
the structure is shown in Figure 2. Table 5 gives the eigen-
values and Mulliken populations of ten orbits near Fermi
level of Cys in the potential of five dipoles.

6 Discussion

In order to study the water solvent effect on the electronic
structure of Cys, the electronic structure of an isolated
Cys is calculated by free cluster calculation. The total en-
ergy of an isolated Cys is –1438.2737 Ry. The results are
given in Table 6.

The eigenvalues of orbits 25 to 34 of Cys with three po-
tentials are given in Table 7. The last row gives the energy
gap: Eg = E33 − E32. Figure 3 shows the comparison be-
tween the three sets of eigenvalues of Cys in the potentials
of dipoles, water molecules and no potential, respectively.

The properties of Cys are mainly determined by the
electronic states near the Fermi level. In the Tables 3, 5

Fig. 2. The final geometric structure of Cys + 5 dipoles sys-
tem.

and 6, the Mulliken population analysis shows that in all
three cases, the electronic states near the Fermi level are
similar: three oxygen 2p electrons of COO− below the
Fermi level (states 32, 31 and 30), one sulphur 3p electron
of S-H tip of lateral chain (state 29), and a hybridized state
of carbon 2p electron and oxygen 2p electron of COO−
(state 28).

By comparing the second and third columns of Ta-
ble 7, as well as Figures 3b and 3c, it is found that water
molecules do not markedly change the relative positions
of the occupied electronic states. The main effect of water
molecules is to lower all the eigenvalues of Cys by about
0.032 Ry, and to broaden the energy gap by 16%. In Fig-
ure 3, the energy origin of 3c has been moved down so
the Fermi levels of the Figures 3a–3c being in the same
horizontal line. It is easily found that in Figures 3b and
3c, the relative positions of the occupied electronic states
are very close.

The comparison of the second and third columns of
Table 7, as well as Figures 3a and 3b, reveals that be-
low the Fermi level, eigenvalues of Cys in the potential of
dipoles are close to that of Cys in the potential of water
molecules. But above the Fermi level, the energy gap is
broadened by 14%.

7 Conclusion

The geometric structure of Cys + 5H2O system with
the lowest total energy is determined by free cluster cal-
culation. Based on the geometric structure above, the
electronic structure of Cys with the potential of water
molecules is calculated using the self-consistent cluster-
embedding (SCCE) calculation. Then the water molecules
are replaced by adjustable dipoles. The dipoles are ad-
justed so the electronic structure of Cys with the potential
of dipoles is close to that of water molecules. The calcu-
lations show that the major effect of water molecules on
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Table 5. Part of eigenvalues and Mulliken populations of Cys with the potential of 5 dipoles.

State Energy Mulliken populations
(Ry) C N O H S

s p s p s p s s p
34 –0.1126 –0.6677 0.3159 –0.0098 –0.1205 –0.0004 –0.0075 1.2558 0.0449 0.1641
33 –0.1765 0.3186 0.0578 –0.5871 0.0736 0.0262 0.0204 0.9692 0.0121 0.0917

Above are unoccupied states
32 –0.4078 0.0081 0.0447 –0.0168 0.0000 –0.0054 0.9536 0.0063 0.0003 0.0087
31 –0.4142 0.0125 0.1187 –0.0004 –0.0016 –0.0632 0.9351 –0.0054 0.0005 0.0033
30 –0.4714 0.0711 0.1625 –0.0187 –0.0002 –0.0183 0.7746 0.0097 0.0003 0.0180
29 –0.5200 –0.0076 0.0426 –0.0231 –0.0035 0.0008 0.0143 0.0864 0.0027 0.8783
28 –0.6735 –0.0262 0.2447 0.0028 –0.0036 0.0103 0.0604 0.0815 0.0988 0.5228
27 –0.6904 0.0180 0.3745 –0.0014 0.0073 0.0584 0.4172 0.0482 0.0205 0.0538
26 –0.7133 –0.0020 0.2397 –0.0019 0.0199 0.1848 0.5132 0.0241 0.0069 0.0144
25 –0.7902 0.0355 0.2164 0.0042 0.0027 0.2234 0.3883 0.0421 0.0132 0.0702

Table 6. Part of eigenvalues and Mulliken populations of an isolated Cys.

State Energy Mulliken populations
(Ry) C N O H S

s p s p s p s s p
34 –0.1090 –0.6627 0.2629 –0.0758 –0.0452 0.0003 –0.0087 1.2974 0.0849 0.1232
33 –0.2002 0.2782 –0.0317 –0.7013 0.0852 –0.0143 0.0110 1.3039 0.0371 0.0144

Above are unoccupied states
32 –0.3738 0.0052 0.0217 –0.0029 0.0011 –0.0056 0.9714 0.0051 0.0003 0.0035
31 –0.3807 0.0061 0.1417 –0.0092 –0.0060 –0.0542 0.9124 0.0013 0.0005 0.0064
30 –0.4377 0.0909 0.1317 –0.0165 –0.0004 –0.0137 0.7872 0.0100 0.0009 0.0092
29 –0.5221 –0.0008 0.0329 –0.0010 0.0017 –0.0019 0.0045 0.0679 0.0001 0.8881
28 –0.6530 –0.0038 0.3986 –0.0041 0.0081 0.0502 0.4472 0.0158 0.0028 0.0822
27 –0.6723 –0.0312 0.2522 0.0159 –0.0039 0.0540 0.2050 0.1026 0.0741 0.3252
26 –0.6857 0.0003 0.2322 –0.0003 0.0240 0.1315 0.3621 0.0407 0.0498 0.1564
25 –0.7609 0.0484 0.1692 0.0019 0.0023 0.2760 0.4409 0.0180 0.0108 0.0309

Table 7. Three sets of eigenvalues of Cys.

Eigenvalues Dipoles Water molecules No potential
Energy (Ry) Energy (Ry) Energy (Ry)

34 (unoccupied) –0.1126 –0.1607 –0.1090
33 (unoccupied) –0.1765 –0.2041 –0.2002
32 (EF ) –0.4078 –0.4062 –0.3738
31 –0.4142 –0.4122 –0.3807
30 –0.4714 –0.4655 –0.4377
29 –0.5200 –0.5158 –0.5221
28 –0.6735 –0.6887 –0.6530
27 –0.6904 –0.6999 –0.6723
26 –0.7133 –0.7145 –0.6857
25 –0.7902 –0.7872 –0.7609
Eg 0.2313 0.2021 0.1736

Cys’s electronic structure is to lower all occupied eigen-
states by about 0.032 Ry, and broadening energy gap by
16%. The effect of water molecules on the electronic struc-
ture of Cys can be simulated by the potential of dipoles,
the eigenvalues and Mulliken populations calculated using
two kinds of potentials are very close. So we established
a simple, easy-use, with almost no additional computa-
tional effort, dipoles potential which simulated the effect
of water molecules on Cys’ electronic structure.

Fig. 3. Comparison of three sets of eigenvalues (Real line
represents occupied state, dashed line represents unoccupied
state).
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A single chain protein molecule in solution has a
N-terminal H3N+, a C-terminal COO−, and many lateral
chains which can be sorted into three kinds, hydrophilic,
hydrophobic and neutral. This work shows that simple
dipole potential can be used to simulate the effect of water
molecules on the electronic structure of Cys. More dipole
potentials simulating the potentials of water molecules
on other amino acids will be constructed. All results will
be directly applied to the electronic structure calculation
of protein in solution. In order to make easy use of the
dipole potential, it may be worth to classify the dipole
potentials into five kinds suited for N-terminal H3N+, C-
terminal COO−, hydrophilic lateral chain, hydrophobic
lateral chain and neutral lateral chain, respectively.
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